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Abstract. A family of multivariate rational functions is constructed. It has strong local minimizers
with prescribed function values at prescribed positions. While there might be additional local minima,
such minima cannot be global. A second family of multivariate rational functions is given, having
prescribed global minimizers and prescribed interpolating data.
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1. Introduction

Testing global optimization algorithms is a nontrivial task, since many of the well-
known test functions (for example, those in the classical test set by Dixon and
Szegö [4]) are nowadays quite simplistic, and the global minima of more difficult
functions are often not known.

Therefore it is desirable to have test functions that attain their global minimum
at one or more predefined points, and that can be adjusted to match various dif-
ficulties, such as the existence of many local minimizers, ill-conditioned Hessian
matrices at the optimizers (resulting in curved, narrow valleys), local minima close
to a global one, narrow and deep holes, etc.

In this note, it is shown that this can be indeed achieved by two simple classes
of rational functions in arbitrary dimensions.

In the following, ‖ · ‖ = √
xT x denotes the Euclidean norm of a vector x.

2. Prescribed global and local minimizers

THEOREM 2.1. Let x1, . . . , xm ∈ R
n be distinct, let f1, . . . , fm ∈ R, and let

R1, . . . , Rn ∈ R
n×n be triangular matrices with positive diagonal entries. Then the
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function

f (x) =




fk if x = xk for some k,

∑
k

(2fk + rk(x))/rk(x)2

∑
k

2/rk(x)2
otherwise,

(1)

where

rk(x) = ‖Rk(x − xk)‖2 (2)

is infinitely often differentiable, and has strong local minimizers at x = xk , with
function values f (xk) = fk and Hessian matrices f ′′(xk) = RT

k Rk. Moreover, the
global minimizers of f are precisely the points xk with fk = min{f1, . . . , fm}.

Proof. In a sufficiently small neighbourhood of xk we have

rk(xk + s) = ‖Rks‖2 = sT RT
k Rks = O(‖s‖2).

Therefore

f (xk + s) =
(2fk + rk

r2
k

+ O(1)
)/( 2

r2
k

+ O(1)
)

= (2fk + rk + O(‖s‖4))/(2 + O(‖s‖4)),

giving

f (xk + s) = fk + 1

2
sT RT

k Rks + O(‖s‖4). (3)

This implies that

lim
s→0

f (xk + s) = fk,

providing continuity of f . Since f is rational for x /∈ {x1, . . . , xm} and the de-
nominators vanish only on this set, we see that f has no real poles and is therefore
infinitely often differentiable. Comparison of (3) with the Taylor expansion shows
that f ′(xk) = 0 and f ′′(xk) = RT

k Rk is positive definite (since Rk is nonsingular).
Therefore xk is a strong local minimizer of f .

Now let f0 = minkfk. Then, for x /∈ {x1, . . . , xm},

f (x) − f0 =

∑
k

(2(fk − f0) + rk)/r2
k∑

k

2/r2
k

> 0.
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Figure 1. Rational functions with designed minima at (x, f ) = (0, 0) and (1, 1).

On the other hand,

min
k

f (xk) = min
k

fk = f0.

Therefore the global minimizers of f are precisely the xk with fk = f0. �
EXAMPLE 2.2. To illustrate the flexibility of the construction we show in Figure
1 some univariate rational functions created with x1 = 0, f1 = 0, x2 = 1, f2 = 1
and various values for r = R1 and s = R2. We see (first two graphs) that there may
be additional, undesigned local minima, and that sometimes a nonglobal designed
minimum is hardly visible since it is only a small dip in a larger peak. As predicted
by the theorem, the global minimizer is always at x = 0.

REMARKS 2.3.
(i) f may have additional local minimizers but, by the theorem, these cannot be

global.
(ii) Far away from all points, f (x) grows like ‖x‖2 in the sense that f (x)/‖x‖2

remains bounded.
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(iii) An arbitrary positive definite Hessian matrix G can be written in the form
G = RT R with a triangular matrix with positive diagonal entries. This is
achieved by means of a Cholesky factorization. Therefore the theory al-
lows to prescribe the full quadratic Taylor approximation of arbitrary local
minimizers.

(iv) For use as a test problem generator, we suggest that the function values fk

and the triangular matrices Rk are generated randomly. To get multiple global
minima one simply replaces the smallest few fk by f0 = minkfk. To get
deep and narrow holes, multiply the corresponding Rk by a moderately large
number. To get curved, narrow valleys, replace some diagonal entries of Rk

by moderately small numbers. The positions of the local minimizers may
be placed according to geometric patterns, or randomly. One can also place
some minimizers much closer than the others. For test problems reported in
publications, it is better to use xk, fk, Rk rounded to simple values that can
be explicitly given in a table (or in a file retrievable from the WWW).

In the most useful special case m = 2, the function (1) takes the form

f (x) = r2(x)2(2f1 + r1(x)) + r1(x)2(2f2 + r2(x))

2(r1(x)2 + r2(x)2)
. (4)

For example, for f1 = f2 = 0, x1 = u, x2 = v �= u,R1 = R2 = I , (4) reduces to

f (x) = ‖x − u‖2‖x − v‖2(‖x − u‖2 + ‖x − v‖2)

2(‖x − u‖4 + ‖x − v‖4)
. (5)

This function is always nonnegative, has precisely two global minimizers at x = u

and x = v, and satisfies

1

2
min(‖x − u‖2, ‖x − v‖2) � f (x) � 1

2
max(‖x − u‖2, ‖x − v‖2).

A similar, somewhat simpler function with the same properties is

f (x) = ‖x − u‖2 ‖x − v‖2

2(‖x − u‖2 + ‖x − v‖2)
. (6)

3. Prescribed global minimizers and interpolation data

Törn and Zilinskas [11] proved that any method based on local information only
that converges for every continuous f to a global minimizer of f in a feasible
domain C must produce a sequence of points x1, x2, . . . that is dense in C. In
particular, global optimization with function values only is an intrinsically ill-posed
problem since without global information it is easy to miss minimizers lying in
deep and narrow holes.
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The following construction makes this explicit and provides further test prob-
lems, interpolating given data at a finite set of points but with arbitrarily positioned
global minimizers.

THEOREM 3.1. Given N pairs (x1, f1), . . . , (xN , fN) ∈ R
n×R, m points x̂1, . . . ,

x̂m ∈ R
n, a number f̂ ∈ R with f̂ < minj fj , and m triangular matrices R1, . . . ,

Rn ∈ R
n×n with positive diagonal entries, let

f (x) = f̂ + p(x)2q(x), (7)

q(x) =

m∏
k=1

‖Rk(x − x̂k)‖2

2(1 + ‖B(x)‖2)

with arbitrary B(x), and p(x) is a function interpolating the following data:

p(x̂k) = ±
√√√√√ 1 + ‖B(x̂k)‖2∏

l �=k

‖Rl(x̂k − x̂l)‖2
(k = 1, . . . , m)

p(xj ) = ±
√

fj − f̂

q(xj )
(j = 1, . . . , N)

Then f interpolates the given data,

f (xj ) = fj (j = 1 . . . , N),

and has the global minimizers x̂k(k = 1, . . . , m) with global minimum value f̂ and
Hessians f ′′(x̂k) = RT

k Rk.
Proof. The interpolation condition follows from f (xj ) = f̂ + p(xj )

2q(xj ) =
fj . Since q(x) � 0 with equality iff x = x̂k for some k, (7) implies that f (x) has
global minimizers (at least) at the x̂k. To calculate the Hessians at these points, we
note that the form of q(x) implies that q(x̂k) = 0, q ′(x̂k) = 0, and

q ′′(x̂k) =

∏
l �=k

‖Rl(x̂k − x̂l)‖2

1 + ‖B(x̂k)‖2
RT

k Rk

since all other contributions to q ′′(x) vanish at x = x̂k. Since all terms contributing
to the Hessian f ′′ except p2q ′′ contain a factor q or q ′, we have

f ′′(x̂k) = p(x̂k)
2q ′′(x̂k) = RT

k Rk. �
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Figure 2. A rational function with designed global minima at
(0
1
)

and
( 0
−1

)
, and given values

at
(±1
±1

)
.

The theorem again illustrates the importance of global information, such as
Lipschitz constants (e.g., Pinter [8]), curvature bounds (e.g., Brent [2]), interval
extensions (e.g., Kearfott [5], Neumaier [6]) or explicit access to the analytical
structure (Ryoo and Sahinidis [9], Neumaier et al. [7], Adjiman et al. [1]) for
reliable global optimization.

EXAMPLE 3.2. We use B(x) = 0, and take p(x) as the arbitrarily often differen-
tiable Shepard interpolation function (Shepard [10])

p(x) =




p(zl) if x = zl for some l,

m+N∑
l=1

p(zl)‖x − zl‖−2
/ m+N∑

l=1

‖x − zl‖−2 otherwise,

where zl = x̂l for l � m and zl = xl−m for l > m. Figure 2 contains level sets of a
2-dimensional example with R1 = R2 = I , interpolation points

(1
1

)
,
( 1
−1

)
,
(−1

1

)
,
(−1
−1

)
,

corresponding function values 0, 1, 0, 1, and global minimum f̂ − 1 designed at(0
1

)
and

( 0
−1

)
.
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